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Abstract. We study the zero-temperature behaviour of the infinite-ranged Ising spin glass in
a transverse field. Using spin summation and Monte Carlo methods we characterize the zero-
temperature quantum transition. Our results are well compatible with a valueν = 1

4 for the
correlation length exponent,z = 4 for the dynamical exponent and an algebraic decayt−1 for
the imaginary-time correlation function. The zero-temperature Monte Carlo relaxation of the
energy in the presence of the transverse field shows that the system monotonically reaches the
ground-state energy due to quantum fluctuations and displays glassy effects due to the strong
anisotropy in the effective Hamiltonian.

1. Introduction

The purpose of this work is to present some results concerning the zero-temperature critical
behaviour of the Ising spin glass in the presence of a transverse magnetic field. While
classical spin glasses have been extensively studied during the recent years, the role of the
quantum fluctuations in the low-temperature regime are not so well understood. Most work
has been devoted to the study of the one-dimensional case [1] and the mean-field theory
[2–4]. These two limit cases seem to capture one of the most relevant features associated
with the quantum fluctuations, i.e. the presence of tunnelling effects at zero-temperature.
The effect of the transverse field is to allow the system to jump over the free-energy barriers
even at zero temperature. In this work we will focus our attention on the study of the zero-
temperature critical behaviour and some features concerning the Monte Carlo relaxation.
We have considered the infinite-range model where some analytical results can be obtained.
The infinite-range model has been studied in several works. In particular, the phase diagram
of the model has been computed within the static approximation [5], by doing perturbation
expansions [4] and by spin summation calculations [3]. Miller and Huse [6] and Readet al
[7] have obtained the imaginary-time correlation function at the zero-temperature quantum
critical point using a perturbative approach and a Landau expansion respectively. On the
other hand, recent numerical work [8, 9] in two- and three-dimensional quantum spin glasses
reveals that the Monte Carlo method can yield precise estimates of the critical temperature
and reasonable estimates of the critical exponents associated with the quantum transition by
using finite-size scaling techniques.
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Amsterdam, the Netherlands. E-mail address: ritort@phys.uva.nl

0305-4470/96/237355+12$19.50c© 1996 IOP Publishing Ltd 7355



7356 J V Alvarez and F Ritort

The body of the results we present in this work can be divided into three sections (3,
4 and 5) and the purpose of the work is two-fold. First we want to show how the Monte
Carlo technique used in [8, 9] can be used for determining the critical point and the critical
exponents in the infinite-range case. This will be done comparing the results obtained
using numerical spin summation (section 3) and Monte Carlo finite-size scaling calculations
(section 4). The results obtained from both sections 3 and 4 are complementary even though
they have been obtained with different techniques. Once the critical point is obtained we will
obtain the main critical exponentsz andν and we will study the decay of the imaginary-time
correlation function at the critical point. Unfortunately, our results concerning the value of
the dynamical exponentz are in disagreement with theoretical expectations [6, 7]. Second,
we will consider the role of quantum fluctuations on the zero-temperature Monte Carlo
relaxation of the model. While these last results concern the infinite-range model we argue
how our main conclusions are valid also in the short-range case.

2. The model

The model we are interested in is defined by the Hamiltonian

H = −
∑
i<j

Jij σ
z
i σ z

j − 0
∑

i

σ x
i (1)

where the{σi; i = 1, N} are the Pauli spin matrices and0 is the transverse field. TheJij

are Gaussian distributed variables with zero mean and variance 1/N . For 0 = 0 the model
reduces to the classical Sherrington–Kirkpatrick spin-glass model [10]. It is well known
[11, 12] that the ground-state energy of the above Hamiltonian can be written as the free
energy of a classical model with a new imaginary-time dimension,

Eg(0) = − lim
β→∞

lim
M→∞

log(Zeff)

Nβ
(2)

where

Zeff = Trσi
exp(−βHeff(0, M, β))

=
∑

σi=±1

exp

(
A

∑
i<j

M∑
t=1

Jijσ
t
i σ

t
j + B

N∑
i=1

M∑
t=1

σ t
i σ

t+1
i + C

)
(3)

and the spinsσi are now classical variables which take the values±1. The parametersA,
B andC are given by,

A = β

M
B = 1

2 log

(
coth

(
β0

M

))
C = MN

2
log

(
1
2 sinh

(
2β0

M

))
. (4)

In the limit M → ∞ the parametersA andB are highly anisotropic (the coefficientA

goes to zero whileB goes to infinity). This makes it extremely difficult to perform Monte
Carlo simulations of the quantum model. It has been recently shown [8, 9] that it is enough
to consider an isotropic Hamiltonian which nevertheless lies in the same universality class.
We generalize the type of model considered in [8, 9] and we consider the family of models
with parametersA = βcl, B = β

p

cl, C = 0. The casep = 1 was already considered in [8, 9].
It is natural to expect that all the models within this family belong to the same universality
class. The reason being that all these models have the same effective Hamiltonian and
the same type of spin-glass transition as we will see in the next section. We expect the
critical exponents to be independent of the particular model considered. Within this family
of models the parameterβcl plays the role of the inverse of a classical temperature (not to be
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confused with the real temperature) which controls the intensity of the quantum fluctuations.
In other words, this effective classical temperature 1/βcl plays the role of a transverse field
in the true model (4). Concerning the critical behaviour, we have concentrated our attention
in the previous models withp = 1 (model (a)), andp = 2 (model (b)) and we have studied
them using direct spin summation of the mean-field equations and the Monte Carlo method.
While our Monte Carlo numerical results are consistent with the universality hypothesis we
have discovered that model (a) is still hampered by strong Monte Carlo sampling problems
while model (b) gives more confident results.

3. Spin summation results

We have analytically solved the previous model (3) using the replica trick with general
coefficientsA andB. The analytical solution of the infinite-range model has been already
considered in the literature [2, 4, 5] and here we will only sketch the results. Applying
the replica trick and performing the usual technical steps in the theory of spin glasses
(introducing the order parameters and decoupling the different sites) one gets the effective
free energy,

Fcl = − log(Zeff)

Nβcl
= lim

n→0

Zn
eff

Nnβcl
= lim

n→0

A[Q, R]

nβcl
(5)

where (. . .) stands for average over the disorder andn is an integer which denotes the
number of replicas. The saddle-point free energyA[Q, R] reads,

A[Q, R] = A2

4

( ∑
α 6=β

∑
t,t ′

(Qtt ′
αβ)2 +

∑
α

∑
t 6=t ′

(Rtt ′
α )2

)
− logF [Q, R] (6)

with

F [Q, R] =
∑
σ t

α

exp

[
B

∑
t,α

σ t
ασ t+1

α + A2

2

( ∑
α 6=β

∑
t,t ′

Qtt ′
αβσ t

ασ t ′
β +

∑
α

∑
t 6=t ′

Rtt ′
α σ t

ασ t ′
α

)]
. (7)

The indicesα, β = 1, . . . , n stand for replica indices while the indicest , t ′ = 1, . . . , M

run over the imaginary-time direction with periodic boundary conditions (i.e.σM+1
α = σ 1

α ).
The saddle-point equations yield the order parametersQ andR,

Qtt ′
αβ = 〈σ t

ασ t ′
β 〉 Rtt ′

α = 〈σ t
ασ t ′

α 〉 (8)

where the thermal averages〈. . .〉 are done over the effective partition function defined in
(7). To solve the previous equation we impose the static condition (i.e. no dependence on
the imaginary-time variablest, t ′) in the set of parametersQ while theRs are assumed to
be not static but translationally time invariant, i.e. depend only on the difference of times
t − t ′. The form of this condition is a direct consequence of the time-translation invariance
of the effective Hamiltonian (10) (see below). In order to determine the critical value of
βcl it is enough to consider replica symmetry. In this case the order parameters assume the
form Qtt ′

αβ = q, Rtt ′
α = R(t − t ′) and the free energy reads,

βf = A2

4

∑
t 6=t ′

(R(t − t ′))2 + A2M

4
(1 − q2) − A2M

2
(1 − q) −

∫ ∞

−∞

dx

(2π)
1
2

e−(x2/2) log2(x)

(9)
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where the function2(x) is given by

2(x) =
∑
σ t

exp(4(x, σ ))

=
∑
σ t

exp

(
B

∑
t

σ tσ t+1 + (A2q)
1
2 x

∑
t

σ t + A2

2

∑
t 6=t ′

(R(t − t ′) − q)σ tσ t ′
)
(10)

and the order parametersq andR(t − t ′) can be obtained solving the equations,

q =
∫ ∞

−∞

dx

(2π)
1
2

e−(x2/2)

(∑
σ σ t exp(4(x, σ ))

2(x)

)2

(11)

R(t − t ′) =
∫ ∞

−∞

dx

(2π)
1
2

e−(x2/2)

(∑
σ σ tσ t ′ exp(4(x, σ ))

2(x)

)
. (12)

We have numerically solved the previous nonlinear equations for the models (a) and (b)
at different values ofM ranging from 2 to 15. In the same way as in [3] we have extrapolated
the different parametersq andR(t − t ′) to theM → ∞ limit. We have found that a second-
degree polynomial in 1/M yields very stable and good results. Our calculations show that
there is a continuous spin-glass transition from a paramagnetic phase(q = 0) to a spin-glass
phase whereq is finite. TheR(t − t ′) are non-zero at any finite temperature and have a
non-trivial time dependence. Within the spin-glass phase we computed the value ofq which
vanishes linearly with the temperature at the critical temperature. This is in agreement with
the expected quantum critical exponentβ = 1 [7]. Extrapolatingq to 0 we extract the
value of Tcl. For the model (b) we are very interested to find thatT

(b)

cl = 2.11± 0.01 (a
less accurate determination for model (a) yieldsT

(a)
cl ' 2.81). The spin summation method

yields the thermodynamic quantities with good precision but is not very accurate in yielding
the quantum critical exponentsz andν at the transition point.

4. Monte Carlo results

In order to characterize the quantum critical point we have done Monte Carlo numerical
simulations of both models (a) and (b). In our preliminary study of both models we noted
that model (a) presented strong Monte Carlo sampling problems. In fact, we observed that
some observables displayed strong temperature-dependent fluctuations. These bad sampling
effects are absent in model (b) which yields the critical behaviour with modest computational
effort. Note that model (a) corresponds to the case considered in [8, 9]. In what follows, and
otherwise stated, we will present the numerical results for model (b). In order to simulate the
system described by (3) we considerM coupled systems along the time direction with the
same realization of disorder. To increase the speed of the computations we have considered
the case of discrete couplingsJij = ± 1√

(N)
which yields the same behaviour in the largeN

limit as in the case of a Gaussian distribution of couplings. We have simulated two different
replicas{σ t

i , τ
t
i ; i = 1, . . . , N; t = 1, . . . , M} of the system (6) with the same realization of

the disorder. The main quantity we are interested in is the spin–spin overlap

q = 1

nM

N∑
i=1

M∑
t=1

σ t
i τ

t
i (13)

which yields the spin-glass susceptibility,

χSG = NM
(
〈q2〉J − 〈q〉J 2

)
. (14)
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Following [8, 9] we consider the Binder parameter for different values ofN and M.
This adimensional parameter measures the Gaussianity of the statistical fluctuations and is
defined by,

g = gJ = 1

2

[
3 −

( 〈q4〉J
〈q2〉2

J

)]
. (15)

Note that the Binder parameter is averaged over different realizations of samples. This is
in contrast with usual calculations in classical spin glasses where one averages the moments
〈q2〉, 〈q4〉 before computingg.

In the vicinity of the critical point the spin-glass susceptibility (14) and the Binder
parameter (15) are expected to scale with the size of the systemN and the temporal
dimensionM in the following way,

χSG = Npχ̂(N(T − Tc)
q, N/Mr) (16)

g = ĝ(N(T − Tc)
q, N/Mr) (17)

whereχ̂ , ĝ are scaling functions andp, q, r are mean-field exponents related to the exponent
ν and the dynamical exponent†.

Now we face the problem that the finite-size scaling depends on two variablesN andM.
As noted in [8, 9] the phase transition is signalled by the behaviour of the parameterg as a
function ofN andM. For large values ofM the system behaves as a one-dimensional system
and for small values ofM the system behaves as the classical Sherrington–Kirkpatrick model
[10]. So the Binder parameter (15) is expected to go to zero for large and small values
of M. At intermediate values ofM a maximum forg is expected. Above the critical
temperature the system becomes disordered and the value ofg associated to that maximum
decreases withN . Below Tc it increases withN since the system tends to order. At the
critical point T = Tc the maximum value ofg is constant withN . According to (16) the
scaling withN of the value ofM corresponding to the position of maximum determines the
mean-field exponentr. The previous criteria yields the critical temperature with very good
precision. We findT = 2.11± 0.01 in agreement with the results that we obtained in the
previous section. Our results for the spin-glass susceptibilityχSG and the Binder parameter
g are shown in figures 1 and 2 atT = 2.11. The values ofN we studied cover the range
N = 32–160 with 5000 samples in each case. Note that in figure 1 data for the smallest
sizeN = 64 tend to be slightly out of the region where data collapse. The situation is even
worse with data for smaller sizes. In fact we have observed that small values ofN (less
than N ' 50) are affected by strong subdominant corrections to the critical behaviour. It
is not too difficult to explain this result. Since the scaling behaviour is expected to occur
in the limit M → ∞ the corrections can be very large if the considered values ofM are
too small. In fact, in our case the maximum ofg is located at quite small values ofM (for
instance, atN = 32 the value ofM where theg has its maximum is less than 2 which is
certainly very small). This is in contrast to what is found in two- and three-dimensional
quantum-spin glasses [8, 9].

Larger values ofN allow the values of the critical exponents to be extracted. The
exponentsp, q, r can be derived as a function ofν and the dynamical exponentz. These
are given by,ν = pq/2, zν = q/r which yield γ = 2ν. The numerical results forg show
that the exponentr = 2 fits well the scaling of the functiong at the critical point. The fit of
the spin-glass susceptibility as a function of the temperature in the region of scaling (where

† The quantum exponentz is different from the classical dynamical exponent associated with the critical-time
dynamics.
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Figure 1. Binder parameterg(N, M) in model (b) atT = Tc = 2.11 for different sizesN = 64,

96, 128, 160 as a function ofM/N
2
3 .

Figure 2. Spin-glass susceptibilityχ(N, M)/N
1
3 in model (b) atT = Tc = 2.11 for different

sizesN = 64, 96, 128, 160 as a function ofM/N
2
3 . The inset shows theχ(N, M)/N

1
3 as

a function of the temperature forN = 32, 96, 160 for values ofN , M where theg takes its

maximum value. The straight line in the inset is the asymptotic behaviourx− 1
2 of the scaling

function.

the g takes its maximum value) is shown in the inset of figure 2 and is quite consistent
with q = 3

2, p = 1
3 which yields ν = 1

4 and γ = 1
2 as predicted within the Gaussian

approximation [7]. Unfortunately, it is difficult for us to conclude, from the numerical data,
on the exact value of the exponentz. Our best fit revealsr = 2, z = 3 which yieldsβ = 7

8.
But we cannot discard a slightly smaller value liker = 3

2 for instance, which is also good
within our numerical precision. This is also a plausible result if one considers the presence
in the numerical results of the aforementioned finiteM corrections. What we definitely
discard from our numerical data of the Binder parameter and the susceptibility is the value
r = 3 which would yieldz = 2 andβ = 3

4 (using the quite consistent values ofq = 3
2,

p = 1
3). Then we find thatz = 3 or z = 4 (we consider the simplest possibility of integer

values ofz for the dynamical exponent in mean-field theory) our data fits quite well while
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z = 2 does not. Becausez = 4 also yields the natural exponentβ = 1 (unlike z = 3 which
yield β = 7

8) we conclude that thecanonical exponentsr = 2
3, z = 4 are the ones which

fit the numerical data reasonably well. These are the values of the exponents used to scale
data in figures 1 and 2. To definitely conclude on the value ofz we should explore larger
sizes. But this is a very difficult task due to the long-range nature of the model we are
studying which makes simulations very time consuming. It is interesting to note that the
critical value ofg(gc = maxM{g(N, M, Tc)}) is close to 0.056 and smaller than the value
obtained in two and three dimensions [8, 9] as expected. As previously said, we have also
performed numerical simulations of model (a) which shows a critical value ofg of order
0.07 slightly higher than that of model (b). But in this case we have not been able to make
the data forg collapse in a single universal curve. As said previously, we are suspicious
that strong Monte Carlo sampling problems are the reason for such bad results. This is
presumably related to the value ofB in the critical point which is higher in model (a) than
in model (b). This implies stronger anisotropic interactions in the first case which makes
Monte Carlo relaxations slower (see section 5).

Finally, to give further numerical support to the previous reported valuez = 4, we
have considered the imaginary-time correlation function. Recently Miller and Huse [6] and
Sachdevet al [7] have obtained the imaginary-time correlation function at the critical point
using a perturbative approach. Our dynamical mean-field exponentz is in disagreement
with their results. At the critical point they obtain,

C(t) = 〈σ 0
i σ t

i 〉 ∼ t−α (18)

with the valueα = 2. Figure 3 is a check of the theoretical expectation for the imaginary-
time correlation function at the critical temperatureT = 2.11. Simulations have been done
for a large systemN = 2272,M = 20 such that it is in the scaling region where we expect
the g(N, M, Tc) takes its maximum value. We have carefully checked that the system is
in thermal equilibrium and data has been averaged over eight samples. The results for
the decay of the correlation function (7) yields an exponentα ' 1.2 consistent with the
exponentα = β/νz which ranges from 1 to76 depending whetherz = 3 or z = 4. Note that
the decay of the imaginary-time correlation function (18) is quite sensitive to how close we
are to the critical region. Obviously, if we are not precisely in the critical region we expect
the system to be slightly more disordered and the correlation function to decay faster. Then,
in the general case one finds the dynamical exponentz to be larger than expected [15] while
in our case we find the opposite result. Consequently the fitted value 1.2 is an upper limit
to the true exponentα which we naturally find to be 1 and thenz = 4. Again, it is not clear
to us how the predicted dynamical exponentα = 2 (andz = 2) can fit our numerical data.

5. Zero-temperature Monte Carlo relaxation

Now that we have characterized the zero-temperature quantum transition we want to
present some results concerning the quantum Monte Carlo relaxation of the model at zero
temperature. In the classical case (zero transverse field) we already know that the relaxation
at zero temperature of the system stops whenever it finds a metastable state [16]. Because
the dynamics is non-ergodic in the classical case (the system cannot jump over energy
barriers) then the system cannot reach the ground-state energy. When a transverse field is
applied the system can tunnel through energy barriers allowing for a new type of relaxation.
In order to avoid misunderstandings we want to clearly stress that our purpose in this section
is the study of the relaxational features associated with the Monte Carlo dynamics in the
presence of anisotropy effects. We are not aware of this kind of study in the literature (see
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Figure 3. Imaginary-time correlation function in model (b) forN = 2272, M = 20 in the
scaling region averaged over eight samples. The fit is of the formC(t) = A/T α + A/(20− t)α

with the best-fit parametersα = 1.2, A = 0.3.

[13]). In principle this is different from the real-time dynamics in a macroscopic system in
the presence of quantum fluctuations. Hopefully our studies could shed light on the features
of the relaxational processes involved in real-time dynamics in a quantum system. This is
a very interesting point which is outside of the scope of the present work and we will not
address it here. In real systems the quantum tunnelling effects are a consequence of the
coupling of many degrees of freedom while in our simple model these effects are mimicked
by the ferromagnetic coupling in the imaginary-time direction. This coupling prevents the
system (at zero temperature and in the presence of a small transverse field) from persisting
forever in a metastable state.

In order to investigate the Monte Carlo relaxation we have considered thetrue
anisotropic quantum model of (3) with the coefficientsA, B, C given in (4) at very low
temperatures as a function of the transverse field. One could also study the Monte Carlo
relaxation of the effective models (a) and (b) used to study the critical properties throughout
this work. Because our main purpose is to study the Monte Carlo relaxation in the presence
of a strong anisotropy in the coefficientsA and B, in what follows we will focus on the
study of the effective model(3, 4). Specifically we are interested in the behaviour of the
model for largeβ in the limit M → ∞ with β/M as small as possible†. In this limit
the Hamiltonian (3) is strongly anisotropic, the coefficientA resembles 1/M while B is
much larger and resembles log(M). The total energy in (3) can be decomposed in two
partsEJ , EF plus a configuration-independent constantC : E = AEJ + BEF + C where
EJ is the sum of all interaction energies in the different imaginary-time slices andEF is a
nearest-neighbour ferromagnetic interaction between spins in the different imaginary-time
slices.

The interaction energyEJ can be analytically computed in the infinite-range model.
This quantity is given by

EJ = − 1

MN

M∑
t=1

∑
i<j

Jij 〈σ t
i σ

t
j 〉 (19)

where〈. . .〉 stands for the thermal average and(. . .) stands for the average over the disorder.

† Note that in (2) the limitβ → ∞ is performed after the limitM → ∞.
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Applying the results of section 3 and standard analytical methods (see [17] for a review)
we get (in the replica symmetric approximation),

EJ = −AM

2

(
1 +

∑
t 6=0

R(t)2 − Mq2

)
. (20)

Note that whenM = 1, A = β, and we get the expression for the internal energy in the
Sherrington–Kirkpatrick model in the replica symmetric approximationEJ = − β

2 (1 − q2)

[10].
Our main interest is the relaxational behaviour of the interaction partEJ as a function

of time. Note that in the limitM → ∞ the relaxation of the energyEJ is extremely slow
with time (because the main contribution to the full energy in the Hamiltonian (3) is due to
the ferromagnetic termEF ). Now we want to show that the Monte Carlo relaxation of the
energyEJ is the same if the Monte Carlo time is rescaled by the factor(β/M)2. This is a
natural result since the parametersA andB in (4) are only a function of that ratio. The proof
is quite simple. For small values ofβ/M the ferromagnetic part of the energyEF is very
large. Then one gets an acceptance rate completely dominated by the energetic termBEF .
Because the ferromagnetic coupling is one dimensional, the main change of energy when
one spin is flipped is 4B, and the probability to accept this change is exp(−4B) ' (β/M)2

for small values ofβ/M and a fixed value of0 which yields the desired result. This is
quite general and also applies to short-range systems.

We performed two kinds of experiment. We have studied zero-temperature Monte Carlo
relaxations at a fixed transverse field and we have considered the model at different low
temperatures and different values ofM. In figure 4 we show the relaxation of the energyEJ

as a function of Monte Carlo time for different values ofM andβ such that the ratioβ/M

is small. The simulations were performed for two different sizes,N = 320, 640, finding
the same qualitative results. We studied several different ratios ofβ/M ranging from 0.2 to
0.001. The explored temperatures wereT = 0.1, 0.02, 0.01, deep in the low-temperature
region, and the following values ofM = 50, 100, 500, 1000. Relaxations were studied
with a small transverse field0 = 0.1 (the critical value of the transverse field is close to 1.5
[3, 4]). In order to make the relaxation curves collapse in a single curve we have rescaled
the time by the factor(β/M)2. It is interesting to observe that the energyEJ decreases to
a value close to−0.76 which is the expected value in the classical Sherrington–Kirkpatrick

Figure 4. Relaxation of the interaction energyEJ with 0 = 0.1 for different ratiosβ/M as a
function of the rescaled Monte Carlo timet∗ = t (β/M)2.
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Figure 5. Hysteresis cycles of the interaction energyEJ at three different cooling ratesr (dotted
curve r = 100, broken curver = 10, full curver = 1). The circles are the analytical result in
the quantum paramagnetic phase above0c ' 1.5 [3, 4].

model at zero temperature at first order of replica symmetry breaking [14]. Note also that
the energyEJ decreases with time but it can fluctuate and sometimes increase due to the
presence of the transverse field. We have clearly seen this effect especially in the large
time regime. The origin of these fluctuations is not thermal but purely quantum and are
mimicked by the ferromagnetic coupling which allows the system to jump over the energy
barriers.

Another interesting aspect of the quantum model we are considering concerns its glassy
properties in the presence of strong anisotropic effects. The transverse field controls the
intensity of quantum fluctuations and we expect strong hysteresis effects as the transverse
field is varied. This is shown in figure 5 where we plot the relaxation of the energyEJ at
three differentcooling–heatingrates as a function of the transverse field0†. The cooling
rate is defined by the number of Monte Carlo steps per temperature step (10 = 0.05 in
figure 5). Hysteresis curves for different values ofM and β collapse to the same curve
once the cooling rate is appropriately scaled by the time factor(β/M)2. The area enclosed
in the hysteresis curves decreases as the cooling–heating rate decreases in a manner similar
to what happens in real glasses. We also show in the figure 5 the analytical resultEJ in
the quantum paramagnetic phase for different values of the transverse field. The energy
was computed using expression (20) by exactly solving the saddle-point equations (12) with
q = 0 in the quantum paramagnetic phase. This was done for different values ofM ranging
from 2 to 15 and extrapolating to theM → ∞ limit. The agreement between the analytical
prediction and the numerical Monte Carlo results is quite good. These analytical results can
also be read as a check of our Monte Carlo procedure.

6. Conclusions

In this work we have studied the zero temperature behaviour of the infinite-range quantum
Ising spin glass in a transverse field. In particular we have studied the critical properties at

† In our case the parameter which is varied is the transverse field and not the temperature as in real glasses.
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the quantum transition point and the Monte Carlo relaxation behaviour as a function of the
transverse field.

Concerning the quantum critical properties we have studied an effective model (the
so-called model (b)) which is expected to be in the same universality class as the original
quantum model(3, 4). This effective model does not present strong Monte Carlo sampling
problems and gives results we can be confident of. Even though our results show strong
finite M corrections for small sizes, our data is in agreement with the mean-field quantum
exponentsν = 1/4, β = 1, γ = 1/2 [7]. Unfortunately we have not been able to corroborate
the prediction for the dynamical exponent and the imaginary-time autocorrelation function
(18) whereα = 2 [6, 7]. This result is expected for a dynamical quantum exponentz = 2
which we definitely rule out from the analysis of the data shown in figures 1, 2 and 3. In
particular, numerical data shown in figure 3 reveals an exponent ofα ' 1.2 which should
be a bit lower if we are not precisely within the scaling region. The valuesα = 1, z = 4
seem to us the natural exponents compatible with our numerical results. We do not see any
simple solution to avoid the conflict with the existing theory. Note that the main discrepancy
with the theory is in the value of the exponentz, the other ones being in agreement with
the theory. This is an interesting point which deserves further investigation. Unfortunately,
from the numerical side, it is very difficult to go to larger sizes since we would need much
more computational time. The reason for such discrepancy is not clear to us. Usually one
expects to find a smaller dynamical exponent if the system stays slightly outside the critical
region of scaling. In our case we find the opposite tendency which makesz always larger
than 3. We do not attach this result to the specific model (b) we have studied since the
value of the dynamical exponent should be universal as they are also the other exponentsν

andγ . Further investigation (theoretical and numerical) is needed to clarify this issue.
We have also investigated the zero-temperature Monte Carlo relaxation of the model.

We have found that the interaction energyEJ in the quantum model(3, 4) in the zero-
temperature limitβ → ∞, with β/M → 0 shows a universal relaxation if the Monte Carlo
time is rescaled by the factor(β/M)2. This result is related to the scaling of the acceptance
rate with β/M and is a consequence of the one-dimensional nature of the ferromagnetic
interaction. For a low transverse field we have observed that the decay curve for the
interaction energyEJ monotonically converges to a value quite close to the static value
predicted in the classical Sherrington–Kirkpatrick model at first order of replica symmetry
breaking. Obviously there are some small corrections to the ground-state energy due to
the small (but finite) value of the transverse field. Because the effective model(3, 4)

mainly depends on the ratioβ/M we expect that similar conclusions about the Monte
Carlo relaxation of the infinite-range model are also valid in the short-range case. We have
observed glassy features in the Monte Carlo relaxation by studying the hysteresis effects as
a function of thecooling–heatingrate variation of the transverse field. The results shown
in figure 5 indicate a relaxation of the model quite reminiscent of that observed in real
glasses. In the presence of a transverse field the system can jump over energy barriers due
to tunnelling effects. Then, at zero temperature, the system is not constrained to remain
forever in a metastable state. It is interesting to speculate whether this jumping of the
system over the energy barriers corresponds to some kind of activated processes in classical
glassy models. This point and the study of a real-time dynamics in disordered systems in the
presence of quantum fluctuations are interesting issues which deserve further investigation.
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